1. 请问老师,这个轮换对称性是怎么回事
首先给你脑补一个空间坐标系的知识首先你确定一个方向轴为x轴 根据右手定则:右手除去拇指的4个手指指向x轴 然后向手心方向转90° 得到新的指向 那么这个指向就是y轴 而你大拇指的指向就是z轴对于空间坐标系中的图形 是否具备轮换对称性性质的立体图形具有这么一个简单的特点:你把3个坐标轴重新命名,原则为x->y y->z z->x 之后,发现原立体图形在新的空间坐标系中的其他性质不发生变化 那么这个图形就具备了轮换对称性的性质,经典的图形举例:圆心在原点的球体 质心在原点的立方体 方程为x=y=z的直线 以原点为圆心 为于第一卦限和第期卦限的球曲面 等等.在二维平面坐标系中 也有具备轮换对称性的性质 当然这个就比较简单 即x换y y换x 然后进行判断 经典图形有:圆心在原点的圆 直线y=x 直线y=x+1 直线y=x-1 双曲线y=1/x 等 由此看来 轮换对称性可以推广到n维坐标系中去 这里不予讨论 由此可以解答楼主的问题:轮换对称性几乎是可以运用到各种类型的积分问题中去 前提是图像具备了轮换对称性的性质. 比较常用的应用就是把原积分式的x y z进行替换之后 原积分大小不变 举例:比如求曲面积分 ∫x^2ds 在球面x^2+y^2+z^2=a^2上的积分 因为积分曲面是具备轮换对称性的 所以原曲面积分 ∫x^2ds=∫y^2ds=∫z^2ds=1/3∫x^2+y^2+z^2du = ∫a^2ds = a^2 x S = 4πa^4。
2. 如何理解轮换对称性
积分轮换对称性是指坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。
如果是二元函数在二维区域积分,其实任何情况下(不管D是否关于y=x对称)都可以同时交换积分函数和积分区域的y和x,设D进行轮换之后的区域为D',则D'与D必定关于y=x对称(D自身和D'自身未必关于y=x对称)
但轮换的目的是为了简化,也就是交换后得到的积分和原积分必须能够通过叠加简化。而两个积分能够直接叠加的前提是区域D和轮换后的区域D'是同一个区域,这就要求D关于y=x对称
扩展资料
轮换对称性跟被积函数自身的对称性无关,而是与积分区域的轮换对称性相关——如果积分区域满足轮换对称性,那么满足轮换对称的两个被积函数在此区间的积分相等。
二重积分轮换对称性的应用主要是:轮换对称后合并被积函数以简化计算。
示例如下:
三重积分是x换y,y换z,z换x(当然,还有其它轮换次序),同样是对积分函数和积分区域同时进行轮换,为了能够直接叠加,还是要求轮换后的区域与原区域一致。
参考资料来源:搜狗百科-积分轮换对称性
3. 轮换对称是什么
轮换对称式 如果一个代数式中的字母按照某种次序轮换,所得代数式和原代 数式恒等,那么这个代数式叫做关于这些字母的轮换对称式. 若某式子的所有字母按确定的顺序排成一列后,将第一个字母用第二个字母代替,第二个字母用第三个字母代替,…最后一个字母用第一个字母代替,如果所得式子与原式恒等,那么称此式子为关于这些字母的这种顺序的轮换对称式举个例子来说吧: (1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0, 也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换. (2) 对于第二类曲面积分只是将dxdy也同时变换即可.比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积 分 ∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx, ∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy. (3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分 ∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称 .第二类和(2)总结相同. (4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分取间没有发生变化,则被积函数作相应变换后,积分值不 变.。
4. 什么叫“轮换对称性”
积分轮换对称性是指坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。
二重积分的轮换对称性
定理1 设函数f(x,y)在有界闭域D上连续,D对坐标x,y具有轮换对称性 ,则
三重积分的轮换对称性
定理2:设函数f(x,y,z)在有界闭域Ω上连续,Ω对坐标x,y,z具有轮换对称性 ,则
扩展资料:
1,第一型曲线积分的轮换对称性
定理3 设L是xoy面上的一条光滑或分段光滑的曲线弧,L对坐标x,y具有轮换对称性,f(x,y)在L上连续,则
2,第二型曲线积分的轮换对称性
定理4 设L是xoy面上的一条光滑或分段光滑的有向曲线弧,L对坐标x,y具有轮换对称性,f(x,y)在L上连续,则
3,第一型曲面积分的轮换对称性
定理5 设∑是光滑或分片光滑的曲面,∑对坐标x,y,z具有轮换对称性,f(x,y,z)在∑上连续,则
4,第二型曲面积分的轮换对称性
定理6 设∑是光滑或分片光滑的有向曲面,∑对坐标x,y,z具有轮换对称性,f(x,y,z)在∑上连续,则
参考资料:搜狗百科----积分轮换对称性
5. 求教大神
轮换对称性本质就是x=y,即需要将所有x换成y,y换成x,那么就是所有相关的方程与换之前的方程一模一样。如果在二重积分中出现,一般会用到函数奇偶性或是积分区间的对称性:在拉格朗日法求最值时也会有这种情况,这时候只需添加方程x=y便能迅速求解极值点。
利用二重积分的对称性解题要求积分区域和函数都有对称性。譬如说如果积分区域关于x轴对称,就需要看被积函数。如果是关于y的奇函数,则二重积分为0,如果是关于y的偶函数,则等于2∫∫(D1)f(x,y)dxdy,D1是一半的区域。
扩展资料:
积分轮换对称性特点及规律:
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0, 也就是积分曲面的方程没有变,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,z,x)dS。
如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分 ∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换。
(2) 对于第二类曲面积分只是将dxdy也同时变换即可 ,比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积 分
∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)dzdx, ∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy。
参考资料来源:百度百科- 积分轮换对称性
-
努比亚z9max手机音乐效验
该机拥有HIFI级音乐芯片,音乐效果不凡。具体体现在:1.音量调节,正常听音乐中高低音都是一个音量,而杜比音效能动态扩大某个音量。比如放打鼓声,杜比会及时提高低音加强鼓声。2.加强音域,杜比音效有开阔、集中、…
-
是atChristmas还是inChristmas
此处该用“on”。在圣诞节正确表达应为 “on Christmas ”。有具体日期的,比如知道几月几日的都用“on” ;不知道日期,但知道年份和月份的用“in” ,知道具体时间,比如几点几分用“at”。…
-
个体工商户应交纳什么税
纳税标准根据国家税务总局《个体工商户定期定额征收管理办法》文件精神 ,定期定额征收方式适用的税种及税率如下:1、根据《中华人民共和国增值税暂行条例》规定,自2009年1月1日起,小规模纳税人增值税征收率为3%…
-
材料成本差异率为负数是什么意思
材料成本差异额,是指材料的实际成本和计划成本之间的差额。差异率负数表示节约差异,即实际成本比计划成本小。正数表示超支差异,即实际成本比计划成本大。…
-
塞翁失马焉知非福是什么意思
比喻一时虽然受到损失,反而因此能得到好处。也指坏事在一定条件下可变为好事,反之亦然。形容人的心态,一定要乐观向上,任何事情都有二面性,不好的一面,有可能向好的一面转化。塞翁失马,焉知非福出自《 淮南子…